Papers
Topics
Authors
Recent
2000 character limit reached

Multiple interaction learning with question-type prior knowledge for constraining answer search space in visual question answering (2009.11118v1)

Published 23 Sep 2020 in cs.CV

Abstract: Different approaches have been proposed to Visual Question Answering (VQA). However, few works are aware of the behaviors of varying joint modality methods over question type prior knowledge extracted from data in constraining answer search space, of which information gives a reliable cue to reason about answers for questions asked in input images. In this paper, we propose a novel VQA model that utilizes the question-type prior information to improve VQA by leveraging the multiple interactions between different joint modality methods based on their behaviors in answering questions from different types. The solid experiments on two benchmark datasets, i.e., VQA 2.0 and TDIUC, indicate that the proposed method yields the best performance with the most competitive approaches.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.