Papers
Topics
Authors
Recent
2000 character limit reached

Enhancing Resource Management through Prediction-based Policies (2009.10950v1)

Published 23 Sep 2020 in cs.DC

Abstract: Task-based programming models are emerging as a promising alternative to make the most of multi-/many-core systems. These programming models rely on runtime systems, and their goal is to improve application performance by properly scheduling application tasks to cores. Additionally, these runtime systems offer policies to cope with application phases that lack in parallelism to fill all cores. However, these policies are usually static and favor either performance or energy efficiency. In this paper, we have extended a task-based runtime system with a lightweight monitoring and prediction infrastructure that dynamically predicts the optimal number of cores required for each application phase, thus improving both performance and energy efficiency. Through the execution of several benchmarks in multi-/many-core systems, we show that our prediction-based policies have competitive performance while improving energy efficiency when compared to state of the art policies.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.