Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Demand Responsive Dynamic Pricing Framework for Prosumer Dominated Microgrids using Multiagent Reinforcement Learning (2009.10890v1)

Published 23 Sep 2020 in eess.SY, cs.LG, cs.MA, and cs.SY

Abstract: Demand Response (DR) has a widely recognized potential for improving grid stability and reliability while reducing customers energy bills. However, the conventional DR techniques come with several shortcomings, such as inability to handle operational uncertainties and incurring customer disutility, impeding their wide spread adoption in real-world applications. This paper proposes a new multiagent Reinforcement Learning (RL) based decision-making environment for implementing a Real-Time Pricing (RTP) DR technique in a prosumer dominated microgrid. The proposed technique addresses several shortcomings common to traditional DR methods and provides significant economic benefits to the grid operator and prosumers. To show its better efficacy, the proposed DR method is compared to a baseline traditional operation scenario in a small-scale microgrid system. Finally, investigations on the use of prosumers energy storage capacity in this microgrid highlight the advantages of the proposed method in establishing a balanced market setup.

Citations (16)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.