Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 200 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

My tweets bring all the traits to the yard: Predicting personality and relational traits in Online Social Networks (2009.10802v1)

Published 22 Sep 2020 in cs.SI, cs.CY, and cs.LG

Abstract: Users in Online Social Networks (OSN) leaves traces that reflect their personality characteristics. The study of these traces is important for a number of fields, such as a social science, psychology, OSN, marketing, and others. Despite a marked increase on research in personality prediction on based on online behavior the focus has been heavily on individual personality traits largely neglecting relational facets of personality. This study aims to address this gap by providing a prediction model for a holistic personality profiling in OSNs that included socio-relational traits (attachment orientations) in combination with standard personality traits. Specifically, we first designed a feature engineering methodology that extracts a wide range of features (accounting for behavior, language, and emotions) from OSN accounts of users. Then, we designed a machine learning model that predicts scores for the psychological traits of the users based on the extracted features. The proposed model architecture is inspired by characteristics embedded in psychological theory, i.e, utilizing interrelations among personality facets, and leads to increased accuracy in comparison with the state of the art approaches. To demonstrate the usefulness of this approach, we applied our model to two datasets, one of random OSN users and one of organizational leaders, and compared their psychological profiles. Our findings demonstrate that the two groups can be clearly separated by only using their psychological profiles, which opens a promising direction for future research on OSN user characterization and classification.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com