Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 219 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

URLLC with Massive MIMO: Analysis and Design at Finite Blocklength (2009.10550v4)

Published 22 Sep 2020 in cs.IT, eess.SP, and math.IT

Abstract: The fast adoption of Massive MIMO for high-throughput communications was enabled by many research contributions mostly relying on infinite-blocklength information-theoretic bounds. This makes it hard to assess the suitability of Massive MIMO for ultra-reliable low-latency communications (URLLC) operating with short blocklength codes. This paper provides a rigorous framework for the characterization and numerical evaluation (using the saddlepoint approximation) of the error probability achievable in the uplink and downlink of Massive MIMO at finite blocklength. The framework encompasses imperfect channel state information, pilot contamination, spatially correlated channels, and arbitrary linear spatial processing. In line with previous results based on infinite-blocklength bounds, we prove that, with minimum mean-square error (MMSE) processing and spatially correlated channels, the error probability at finite blocklength goes to zero as the number $M$ of antennas grows to infinity, even under pilot contamination. On the other hand, numerical results for a practical URLLC network setup involving a base station with $M=100$ antennas, show that a target error probability of $10{-5}$ can be achieved with MMSE processing, uniformly over each cell, only if orthogonal pilot sequences are assigned to all the users in the network. Maximum ratio processing does not suffice.

Citations (67)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.