Papers
Topics
Authors
Recent
2000 character limit reached

Local Post-Hoc Explanations for Predictive Process Monitoring in Manufacturing (2009.10513v2)

Published 22 Sep 2020 in cs.LG, cs.AI, and stat.ML

Abstract: This study proposes an innovative explainable predictive quality analytics solution to facilitate data-driven decision-making for process planning in manufacturing by combining process mining, machine learning, and explainable artificial intelligence (XAI) methods. For this purpose, after integrating the top-floor and shop-floor data obtained from various enterprise information systems, a deep learning model was applied to predict the process outcomes. Since this study aims to operationalize the delivered predictive insights by embedding them into decision-making processes, it is essential to generate relevant explanations for domain experts. To this end, two complementary local post-hoc explanation approaches, Shapley values and Individual Conditional Expectation (ICE) plots are adopted, which are expected to enhance the decision-making capabilities by enabling experts to examine explanations from different perspectives. After assessing the predictive strength of the applied deep neural network with relevant binary classification evaluation measures, a discussion of the generated explanations is provided.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.