Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 33 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 220 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Mixed-Projection Conic Optimization: A New Paradigm for Modeling Rank Constraints (2009.10395v2)

Published 22 Sep 2020 in math.OC, cs.LG, and stat.ML

Abstract: We propose a framework for modeling and solving low-rank optimization problems to certifiable optimality. We introduce symmetric projection matrices that satisfy $Y2=Y$, the matrix analog of binary variables that satisfy $z2=z$, to model rank constraints. By leveraging regularization and strong duality, we prove that this modeling paradigm yields tractable convex optimization problems over the non-convex set of orthogonal projection matrices. Furthermore, we design outer-approximation algorithms to solve low-rank problems to certifiable optimality, compute lower bounds via their semidefinite relaxations, and provide near-optimal solutions through rounding and local search techniques. We implement these numerical ingredients and, for the first time, solve low-rank optimization problems to certifiable optimality. Using currently available spatial branch-and-bound codes, not tailored to projection matrices, we can scale our exact (resp. near-exact) algorithms to matrices with up to 30 (resp. 600) rows/columns. Our algorithms also supply certifiably near-optimal solutions for larger problem sizes and outperform existing heuristics, by deriving an alternative to the popular nuclear norm relaxation which generalizes the perspective relaxation from vectors to matrices. All in all, our framework, which we name Mixed-Projection Conic Optimization, solves low-rank problems to certifiable optimality in a tractable and unified fashion.

Citations (19)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.