Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Efficiently Finding a Maximal Clique Summary via Effective Sampling (2009.10376v2)

Published 22 Sep 2020 in cs.DB

Abstract: Maximal clique enumeration (MCE) is a fundamental problem in graph theory and is used in many applications, such as social network analysis, bioinformatics, intelligent agent systems, cyber security, etc. Most existing MCE algorithms focus on improving the efficiency rather than reducing the output size. The output unfortunately could consist of a large number of maximal cliques. In this paper, we study how to report a summary of less overlapping maximal cliques. The problem was studied before, however, after examining the pioneer approach, we consider it still not satisfactory. To advance the research along this line, our paper attempts to make four contributions: (a) we propose a more effective sampling strategy, which produces a much smaller summary but still ensures that the summary can somehow witness all the maximal cliques and the expectation of each maximal clique witnessed by the summary is above a predefined threshold; (b) we prove that the sampling strategy is optimal under certain optimality conditions; (c) we apply clique-size bounding and design new enumeration order to approach the optimality conditions; and (d) to verify experimentally, we test eight real benchmark datasets that have a variety of graph characteristics. The results show that our new sampling strategy consistently outperforms the state-of-the-art approach by producing smaller summaries and running faster on all the datasets.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.