Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Event Coreference Resolution via a Multi-loss Neural Network without Using Argument Information (2009.10290v1)

Published 22 Sep 2020 in cs.CL

Abstract: Event coreference resolution(ECR) is an important task in NLP and nearly all the existing approaches to this task rely on event argument information. However, these methods tend to suffer from error propagation from the stage of event argument extraction. Besides, not every event mention contains all arguments of an event, and argument information may confuse the model that events have arguments to detect event coreference in real text. Furthermore, the context information of an event is useful to infer the coreference between events. Thus, in order to reduce the errors propagated from event argument extraction and use context information effectively, we propose a multi-loss neural network model that does not need any argument information to do the within-document event coreference resolution task and achieve a significant performance than the state-of-the-art methods.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.