Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

An Incentive Mechanism for Federated Learning in Wireless Cellular network: An Auction Approach (2009.10269v1)

Published 22 Sep 2020 in cs.LG, cs.GT, and cs.NI

Abstract: Federated Learning (FL) is a distributed learning framework that can deal with the distributed issue in machine learning and still guarantee high learning performance. However, it is impractical that all users will sacrifice their resources to join the FL algorithm. This motivates us to study the incentive mechanism design for FL. In this paper, we consider a FL system that involves one base station (BS) and multiple mobile users. The mobile users use their own data to train the local machine learning model, and then send the trained models to the BS, which generates the initial model, collects local models and constructs the global model. Then, we formulate the incentive mechanism between the BS and mobile users as an auction game where the BS is an auctioneer and the mobile users are the sellers. In the proposed game, each mobile user submits its bids according to the minimal energy cost that the mobile users experiences in participating in FL. To decide winners in the auction and maximize social welfare, we propose the primal-dual greedy auction mechanism. The proposed mechanism can guarantee three economic properties, namely, truthfulness, individual rationality and efficiency. Finally, numerical results are shown to demonstrate the performance effectiveness of our proposed mechanism.

Citations (135)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.