Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Operator-valued formulas for Riemannian Gradient and Hessian and families of tractable metrics (2009.10159v2)

Published 21 Sep 2020 in math.OC, cs.CV, cs.LG, and math.DG

Abstract: We provide an explicit formula for the Levi-Civita connection and Riemannian Hessian for a Riemannian manifold that is a quotient of a manifold embedded in an inner product space with a non-constant metric function. Together with a classical formula for projection, this allows us to evaluate Riemannian gradient and Hessian for several families of metrics on classical manifolds, including a family of metrics on Stiefel manifolds connecting both the constant and canonical ambient metrics with closed-form geodesics. Using these formulas, we derive Riemannian optimization frameworks on quotients of Stiefel manifolds, including flag manifolds, and a new family of complete quotient metrics on the manifold of positive-semidefinite matrices of fixed rank, considered as a quotient of a product of Stiefel and positive-definite matrix manifold with affine-invariant metrics. The method is procedural, and in many instances, the Riemannian gradient and Hessian formulas could be derived by symbolic calculus. The method extends the list of potential metrics that could be used in manifold optimization and machine learning.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)