Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 162 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Optimal Provable Robustness of Quantum Classification via Quantum Hypothesis Testing (2009.10064v2)

Published 21 Sep 2020 in quant-ph, cs.CR, cs.LG, and stat.ML

Abstract: Quantum machine learning models have the potential to offer speedups and better predictive accuracy compared to their classical counterparts. However, these quantum algorithms, like their classical counterparts, have been shown to also be vulnerable to input perturbations, in particular for classification problems. These can arise either from noisy implementations or, as a worst-case type of noise, adversarial attacks. In order to develop defence mechanisms and to better understand the reliability of these algorithms, it is crucial to understand their robustness properties in presence of natural noise sources or adversarial manipulation. From the observation that measurements involved in quantum classification algorithms are naturally probabilistic, we uncover and formalize a fundamental link between binary quantum hypothesis testing and provably robust quantum classification. This link leads to a tight robustness condition which puts constraints on the amount of noise a classifier can tolerate, independent of whether the noise source is natural or adversarial. Based on this result, we develop practical protocols to optimally certify robustness. Finally, since this is a robustness condition against worst-case types of noise, our result naturally extends to scenarios where the noise source is known. Thus, we also provide a framework to study the reliability of quantum classification protocols beyond the adversarial, worst-case noise scenarios.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.