Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Monocular Depth Estimation Using Multi Scale Neural Network And Feature Fusion (2009.09934v1)

Published 11 Sep 2020 in cs.CV and cs.LG

Abstract: Depth estimation from monocular images is a challenging problem in computer vision. In this paper, we tackle this problem using a novel network architecture using multi scale feature fusion. Our network uses two different blocks, first which uses different filter sizes for convolution and merges all the individual feature maps. The second block uses dilated convolutions in place of fully connected layers thus reducing computations and increasing the receptive field. We present a new loss function for training the network which uses a depth regression term, SSIM loss term and a multinomial logistic loss term combined. We train and test our network on Make 3D dataset, NYU Depth V2 dataset and Kitti dataset using standard evaluation metrics for depth estimation comprised of RMSE loss and SILog loss. Our network outperforms previous state of the art methods with lesser parameters.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
  1. Abhinav Sagar (15 papers)
Citations (14)

Summary

We haven't generated a summary for this paper yet.