Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Monocular Depth Estimation Using Multi Scale Neural Network And Feature Fusion (2009.09934v1)

Published 11 Sep 2020 in cs.CV and cs.LG

Abstract: Depth estimation from monocular images is a challenging problem in computer vision. In this paper, we tackle this problem using a novel network architecture using multi scale feature fusion. Our network uses two different blocks, first which uses different filter sizes for convolution and merges all the individual feature maps. The second block uses dilated convolutions in place of fully connected layers thus reducing computations and increasing the receptive field. We present a new loss function for training the network which uses a depth regression term, SSIM loss term and a multinomial logistic loss term combined. We train and test our network on Make 3D dataset, NYU Depth V2 dataset and Kitti dataset using standard evaluation metrics for depth estimation comprised of RMSE loss and SILog loss. Our network outperforms previous state of the art methods with lesser parameters.

Citations (14)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.