Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 49 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 19 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Grasp-type Recognition Leveraging Object Affordance (2009.09813v1)

Published 26 Aug 2020 in cs.RO and cs.CV

Abstract: A key challenge in robot teaching is grasp-type recognition with a single RGB image and a target object name. Here, we propose a simple yet effective pipeline to enhance learning-based recognition by leveraging a prior distribution of grasp types for each object. In the pipeline, a convolutional neural network (CNN) recognizes the grasp type from an RGB image. The recognition result is further corrected using the prior distribution (i.e., affordance), which is associated with the target object name. Experimental results showed that the proposed method outperforms both a CNN-only and an affordance-only method. The results highlight the effectiveness of linguistically-driven object affordance for enhancing grasp-type recognition in robot teaching.

Citations (15)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.