Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 135 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Multitask Pointer Network for Multi-Representational Parsing (2009.09730v2)

Published 21 Sep 2020 in cs.CL

Abstract: We propose a transition-based approach that, by training a single model, can efficiently parse any input sentence with both constituent and dependency trees, supporting both continuous/projective and discontinuous/non-projective syntactic structures. To that end, we develop a Pointer Network architecture with two separate task-specific decoders and a common encoder, and follow a multitask learning strategy to jointly train them. The resulting quadratic system, not only becomes the first parser that can jointly produce both unrestricted constituent and dependency trees from a single model, but also proves that both syntactic formalisms can benefit from each other during training, achieving state-of-the-art accuracies in several widely-used benchmarks such as the continuous English and Chinese Penn Treebanks, as well as the discontinuous German NEGRA and TIGER datasets.

Citations (24)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.