Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Privacy-Preserving Machine Learning Training in Aggregation Scenarios (2009.09691v1)

Published 21 Sep 2020 in cs.CR

Abstract: To develop Smart City, the growing popularity of Machine Learning (ML) that appreciates high-quality training datasets generated from diverse IoT devices raises natural questions about the privacy guarantees that can be provided in such settings. Privacy-preserving ML training in an aggregation scenario enables a model demander to securely train ML models with the sensitive IoT data gathered from personal IoT devices. Existing solutions are generally server-aided, cannot deal with the collusion threat between the servers or between the servers and data owners, and do not match the delicate environments of IoT. We propose a privacy-preserving ML training framework named Heda that consists of a library of building blocks based on partial homomorphic encryption (PHE) enabling constructing multiple privacy-preserving ML training protocols for the aggregation scenario without the assistance of untrusted servers and defending the security under collusion situations. Rigorous security analysis demonstrates the proposed protocols can protect the privacy of each participant in the honest-but-curious model and defend the security under most collusion situations. Extensive experiments validate the efficiency of Heda which achieves the privacy-preserving ML training without losing the model accuracy.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.