Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

The Complexity Landscape of Distributed Locally Checkable Problems on Trees (2009.09645v1)

Published 21 Sep 2020 in cs.DS and cs.DC

Abstract: Recent research revealed the existence of gaps in the complexity landscape of locally checkable labeling (LCL) problems in the LOCAL model of distributed computing. For example, the deterministic round complexity of any LCL problem on bounded-degree graphs is either $O(\log\ast n)$ or $\Omega(\log n)$ [Chang, Kopelowitz, and Pettie, FOCS 2016]. The complexity landscape of LCL problems is now quite well-understood, but a few questions remain open. For bounded-degree trees, there is an LCL problem with round complexity $\Theta(n{1/k})$ for each positive integer $k$ [Chang and Pettie, FOCS 2017]. It is conjectured that no LCL problem has round complexity $o(n{1/(k-1)})$ and $\omega(n{1/k})$ on bounded-degree trees. As of now, only the case of $k = 2$ has been proved [Balliu et al., DISC 2018]. In this paper, we show that for LCL problems on bounded-degree trees, there is indeed a gap between $\Theta(n{1/(k-1)})$ and $\Theta(n{1/k})$ for each $k \geq 2$. Our proof is constructive in the sense that it offers a sequential algorithm that decides which side of the gap a given LCL problem belongs to. We also show that it is EXPTIME-hard to distinguish between $\Theta(1)$-round and $\Theta(n)$-round LCL problems on bounded-degree trees. This improves upon a previous PSPACE-hardness result [Balliu et al., PODC 2019].

Citations (25)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)