Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 82 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 458 tok/s Pro
Claude Sonnet 4.5 30 tok/s Pro
2000 character limit reached

Dynamic Horizon Value Estimation for Model-based Reinforcement Learning (2009.09593v1)

Published 21 Sep 2020 in cs.LG and cs.AI

Abstract: Existing model-based value expansion methods typically leverage a world model for value estimation with a fixed rollout horizon to assist policy learning. However, the fixed rollout with an inaccurate model has a potential to harm the learning process. In this paper, we investigate the idea of using the model knowledge for value expansion adaptively. We propose a novel method called Dynamic-horizon Model-based Value Expansion (DMVE) to adjust the world model usage with different rollout horizons. Inspired by reconstruction-based techniques that can be applied for visual data novelty detection, we utilize a world model with a reconstruction module for image feature extraction, in order to acquire more precise value estimation. The raw and the reconstructed images are both used to determine the appropriate horizon for adaptive value expansion. On several benchmark visual control tasks, experimental results show that DMVE outperforms all baselines in sample efficiency and final performance, indicating that DMVE can achieve more effective and accurate value estimation than state-of-the-art model-based methods.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.