Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Learning to Attack: Towards Textual Adversarial Attacking in Real-world Situations (2009.09192v1)

Published 19 Sep 2020 in cs.CL, cs.AI, and cs.CR

Abstract: Adversarial attacking aims to fool deep neural networks with adversarial examples. In the field of natural language processing, various textual adversarial attack models have been proposed, varying in the accessibility to the victim model. Among them, the attack models that only require the output of the victim model are more fit for real-world situations of adversarial attacking. However, to achieve high attack performance, these models usually need to query the victim model too many times, which is neither efficient nor viable in practice. To tackle this problem, we propose a reinforcement learning based attack model, which can learn from attack history and launch attacks more efficiently. In experiments, we evaluate our model by attacking several state-of-the-art models on the benchmark datasets of multiple tasks including sentiment analysis, text classification and natural language inference. Experimental results demonstrate that our model consistently achieves both better attack performance and higher efficiency than recently proposed baseline methods. We also find our attack model can bring more robustness improvement to the victim model by adversarial training. All the code and data of this paper will be made public.

Citations (11)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.