Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 59 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Weight Distillation: Transferring the Knowledge in Neural Network Parameters (2009.09152v3)

Published 19 Sep 2020 in cs.CL

Abstract: Knowledge distillation has been proven to be effective in model acceleration and compression. It allows a small network to learn to generalize in the same way as a large network. Recent successes in pre-training suggest the effectiveness of transferring model parameters. Inspired by this, we investigate methods of model acceleration and compression in another line of research. We propose Weight Distillation to transfer the knowledge in the large network parameters through a parameter generator. Our experiments on WMT16 En-Ro, NIST12 Zh-En, and WMT14 En-De machine translation tasks show that weight distillation can train a small network that is 1.88~2.94x faster than the large network but with competitive performance. With the same sized small network, weight distillation can outperform knowledge distillation by 0.51~1.82 BLEU points.

Citations (20)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.