Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Content Based Player and Game Interaction Model for Game Recommendation in the Cold Start setting (2009.08947v1)

Published 11 Sep 2020 in cs.IR, cs.LG, and stat.ML

Abstract: Game recommendation is an important application of recommender systems. Recommendations are made possible by data sets of historical player and game interactions, and sometimes the data sets include features that describe games or players. Collaborative filtering has been found to be the most accurate predictor of past interactions. However, it can only be applied to predict new interactions for those games and players where a significant number of past interactions are present. In other words, predictions for completely new games and players is not possible. In this paper, we use a survey data set of game likes to present content based interaction models that generalize into new games, new players, and both new games and players simultaneously. We find that the models outperform collaborative filtering in these tasks, which makes them useful for real world game recommendation. The content models also provide interpretations of why certain games are liked by certain players for game analytics purposes.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.