Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Informed Neural Networks for Securing Water Distribution Systems (2009.08842v1)

Published 18 Sep 2020 in cs.CR

Abstract: Physics-informed neural networks (PINNs) is an emerging category of neural networks which can be trained to solve supervised learning tasks while taking into consideration given laws of physics described by general nonlinear partial differential equations. PINNs demonstrate promising characteristics such as performance and accuracy using minimal amount of data for training, utilized to accurately represent the physical properties of a system's dynamic environment. In this work, we employ the emerging paradigm of PINNs to demonstrate their potential in enhancing the security of intelligent cyberphysical systems. In particular, we present a proof-of-concept scenario using the use case of water distribution networks, which involves an attack on a controller in charge of regulating a liquid pump through liquid flow sensor measurements. PINNs are used to mitigate the effects of the attack while demonstrating the applicability and challenges of the approach.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.