Document-level Neural Machine Translation with Document Embeddings (2009.08775v1)
Abstract: Standard neural machine translation (NMT) is on the assumption of document-level context independent. Most existing document-level NMT methods are satisfied with a smattering sense of brief document-level information, while this work focuses on exploiting detailed document-level context in terms of multiple forms of document embeddings, which is capable of sufficiently modeling deeper and richer document-level context. The proposed document-aware NMT is implemented to enhance the Transformer baseline by introducing both global and local document-level clues on the source end. Experiments show that the proposed method significantly improves the translation performance over strong baselines and other related studies.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.