Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

A polynomial size model with implicit SWAP gate counting for exact qubit reordering (2009.08748v1)

Published 18 Sep 2020 in quant-ph, cs.DM, math.CO, and math.OC

Abstract: Due to the physics behind quantum computing, quantum circuit designers must adhere to the constraints posed by the limited interaction distance of qubits. Existing circuits need therefore to be modified via the insertion of SWAP gates, which alter the qubit order by interchanging the location of two qubits' quantum states. We consider the Nearest Neighbor Compliance problem on a linear array, where the number of required SWAP gates is to be minimized. We introduce an Integer Linear Programming model of the problem of which the size scales polynomially in the number of qubits and gates. Furthermore, we solve $131$ benchmark instances to optimality using the commercial solver CPLEX. The benchmark instances are substantially larger in comparison to those evaluated with exact methods before. The largest circuits contain up to $18$ qubits or over $100$ quantum gates. This formulation also seems to be suitable for developing heuristic methods since (near) optimal solutions are discovered quickly in the search process.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.