Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 467 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

A Framework of Randomized Selection Based Certified Defenses Against Data Poisoning Attacks (2009.08739v2)

Published 18 Sep 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Neural network classifiers are vulnerable to data poisoning attacks, as attackers can degrade or even manipulate their predictions thorough poisoning only a few training samples. However, the robustness of heuristic defenses is hard to measure. Random selection based defenses can achieve certified robustness by averaging the classifiers' predictions on the sub-datasets sampled from the training set. This paper proposes a framework of random selection based certified defenses against data poisoning attacks. Specifically, we prove that the random selection schemes that satisfy certain conditions are robust against data poisoning attacks. We also derive the analytical form of the certified radius for the qualified random selection schemes. The certified radius of bagging derived by our framework is tighter than the previous work. Our framework allows users to improve robustness by leveraging prior knowledge about the training set and the poisoning model. Given higher level of prior knowledge, we can achieve higher certified accuracy both theoretically and practically. According to the experiments on three benchmark datasets: MNIST 1/7, MNIST, and CIFAR-10, our method outperforms the state-of-the-art.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.