Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 112 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Fine-tuning Is Not Enough: A Simple yet Effective Watermark Removal Attack for DNN Models (2009.08697v2)

Published 18 Sep 2020 in cs.CR, cs.LG, and stat.ML

Abstract: Watermarking has become the tendency in protecting the intellectual property of DNN models. Recent works, from the adversary's perspective, attempted to subvert watermarking mechanisms by designing watermark removal attacks. However, these attacks mainly adopted sophisticated fine-tuning techniques, which have certain fatal drawbacks or unrealistic assumptions. In this paper, we propose a novel watermark removal attack from a different perspective. Instead of just fine-tuning the watermarked models, we design a simple yet powerful transformation algorithm by combining imperceptible pattern embedding and spatial-level transformations, which can effectively and blindly destroy the memorization of watermarked models to the watermark samples. We also introduce a lightweight fine-tuning strategy to preserve the model performance. Our solution requires much less resource or knowledge about the watermarking scheme than prior works. Extensive experimental results indicate that our attack can bypass state-of-the-art watermarking solutions with very high success rates. Based on our attack, we propose watermark augmentation techniques to enhance the robustness of existing watermarks.

Citations (32)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.