Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 189 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Improved recovery guarantees and sampling strategies for TV minimization in compressive imaging (2009.08555v1)

Published 17 Sep 2020 in cs.IT and math.IT

Abstract: In this paper, we consider the use of Total Variation (TV) minimization for compressive imaging; that is, image reconstruction from subsampled measurements. Focusing on two important imaging modalities -- namely, Fourier imaging and structured binary imaging via the Walsh--Hadamard transform -- we derive uniform recovery guarantees asserting stable and robust recovery for arbitrary random sampling strategies. Using this, we then derive a class of theoretically-optimal sampling strategies. For Fourier sampling, we show recovery of an image with approximately $s$-sparse gradient from $m \gtrsim_d s \cdot \log2(s) \cdot \log4(N)$ measurements, in $d \geq 1$ dimensions. When $d = 2$, this improves the current state-of-the-art result by a factor of $\log(s) \cdot \log(N)$. It also extends it to arbitrary dimensions $d \geq 2$. For Walsh sampling, we prove that $m \gtrsim_d s \cdot \log2(s) \cdot \log2(N/s) \cdot \log3(N) $ measurements suffice in $d \geq 2$ dimensions. To the best of our knowledge, this is the first recovery guarantee for structured binary sampling with TV minimization.

Citations (21)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.