Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 472 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Improved recovery guarantees and sampling strategies for TV minimization in compressive imaging (2009.08555v1)

Published 17 Sep 2020 in cs.IT and math.IT

Abstract: In this paper, we consider the use of Total Variation (TV) minimization for compressive imaging; that is, image reconstruction from subsampled measurements. Focusing on two important imaging modalities -- namely, Fourier imaging and structured binary imaging via the Walsh--Hadamard transform -- we derive uniform recovery guarantees asserting stable and robust recovery for arbitrary random sampling strategies. Using this, we then derive a class of theoretically-optimal sampling strategies. For Fourier sampling, we show recovery of an image with approximately $s$-sparse gradient from $m \gtrsim_d s \cdot \log2(s) \cdot \log4(N)$ measurements, in $d \geq 1$ dimensions. When $d = 2$, this improves the current state-of-the-art result by a factor of $\log(s) \cdot \log(N)$. It also extends it to arbitrary dimensions $d \geq 2$. For Walsh sampling, we prove that $m \gtrsim_d s \cdot \log2(s) \cdot \log2(N/s) \cdot \log3(N) $ measurements suffice in $d \geq 2$ dimensions. To the best of our knowledge, this is the first recovery guarantee for structured binary sampling with TV minimization.

Citations (21)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube