Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 188 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 57 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Large Norms of CNN Layers Do Not Hurt Adversarial Robustness (2009.08435v6)

Published 17 Sep 2020 in cs.LG, cs.CR, cs.CV, and stat.ML

Abstract: Since the Lipschitz properties of convolutional neural networks (CNNs) are widely considered to be related to adversarial robustness, we theoretically characterize the $\ell_1$ norm and $\ell_\infty$ norm of 2D multi-channel convolutional layers and provide efficient methods to compute the exact $\ell_1$ norm and $\ell_\infty$ norm. Based on our theorem, we propose a novel regularization method termed norm decay, which can effectively reduce the norms of convolutional layers and fully-connected layers. Experiments show that norm-regularization methods, including norm decay, weight decay, and singular value clipping, can improve generalization of CNNs. However, they can slightly hurt adversarial robustness. Observing this unexpected phenomenon, we compute the norms of layers in the CNNs trained with three different adversarial training frameworks and surprisingly find that adversarially robust CNNs have comparable or even larger layer norms than their non-adversarially robust counterparts. Furthermore, we prove that under a mild assumption, adversarially robust classifiers can be achieved using neural networks, and an adversarially robust neural network can have an arbitrarily large Lipschitz constant. For this reason, enforcing small norms on CNN layers may be neither necessary nor effective in achieving adversarial robustness. The code is available at https://github.com/youweiliang/norm_robustness.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.