Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Near-Optimal Decremental Hopsets with Applications (2009.08416v5)

Published 17 Sep 2020 in cs.DS

Abstract: Given a weighted undirected graph $G=(V,E,w)$, a hopset $H$ of hopbound $\beta$ and stretch $(1+\epsilon)$ is a set of edges such that for any pair of nodes $u, v \in V$, there is a path in $G \cup H$ of at most $\beta$ hops, whose length is within a $(1+\epsilon)$ factor from the distance between $u$ and $v$ in $G$. We show the first efficient decremental algorithm for maintaining hopsets with a polylogarithmic hopbound. The update time of our algorithm matches the best known static algorithm up to polylogarithmic factors. All the previous decremental hopset constructions had a superpolylogarithmic (but subpolynomial) hopbound of $2{\log{\Omega(1)} n}$ [Bernstein, FOCS'09; HKN, FOCS'14; Chechik, FOCS'18]. By applying our decremental hopset construction, we get improved or near optimal bounds for several distance problems. Most importantly, we show how to decrementally maintain $(2k-1)(1+\epsilon)$-approximate all-pairs shortest paths (for any constant $k \geq 2)$, in $\tilde{O}(n{1/k})$ amortized update time and $O(k)$ query time. This improves (by a polynomial factor) over the update-time of the best previously known decremental algorithm in the constant query time regime. Moreover, it improves over the result of [Chechik, FOCS'18] that has a query time of $O(\log \log(nW))$, where $W$ is the aspect ratio, and the amortized update time is $n{1/k}\cdot(\frac{1}{\epsilon}){\tilde{O}(\sqrt{\log n})}$. For sparse graphs our construction nearly matches the best known static running time / query time tradeoff. We also obtain near-optimal bounds for maintaining approximate multi-source shortest paths and distance sketches, and get improved bounds for approximate single-source shortest paths. Our algorithms are randomized and our bounds hold with high probability against an oblivious adversary.

Citations (6)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.