Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Binarized Johnson-Lindenstrauss embeddings (2009.08320v3)

Published 17 Sep 2020 in cs.IT, cs.DS, math.IT, and math.MG

Abstract: We consider the problem of encoding a set of vectors into a minimal number of bits while preserving information on their Euclidean geometry. We show that this task can be accomplished by applying a Johnson-Lindenstrauss embedding and subsequently binarizing each vector by comparing each entry of the vector to a uniformly random threshold. Using this simple construction we produce two encodings of a dataset such that one can query Euclidean information for a pair of points using a small number of bit operations up to a desired additive error - Euclidean distances in the first case and inner products and squared Euclidean distances in the second. In the latter case, each point is encoded in near-linear time. The number of bits required for these encodings is quantified in terms of two natural complexity parameters of the dataset - its covering numbers and localized Gaussian complexity - and shown to be near-optimal.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.