Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 79 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Graph representation forecasting of patient's medical conditions: towards a digital twin (2009.08299v1)

Published 17 Sep 2020 in stat.ML and cs.LG

Abstract: Objective: Modern medicine needs to shift from a wait and react, curative discipline to a preventative, interdisciplinary science aiming at providing personalised, systemic and precise treatment plans to patients. The aim of this work is to present how the integration of machine learning approaches with mechanistic computational modelling could yield a reliable infrastructure to run probabilistic simulations where the entire organism is considered as a whole. Methods: We propose a general framework that composes advanced AI approaches and integrates mathematical modelling in order to provide a panoramic view over current and future physiological conditions. The proposed architecture is based on a graph neural network (GNNs) forecasting clinically relevant endpoints (such as blood pressure) and a generative adversarial network (GANs) providing a proof of concept of transcriptomic integrability. Results: We show the results of the investigation of pathological effects of overexpression of ACE2 across different signalling pathways in multiple tissues on cardiovascular functions. We provide a proof of concept of integrating a large set of composable clinical models using molecular data to drive local and global clinical parameters and derive future trajectories representing the evolution of the physiological state of the patient. Significance: We argue that the graph representation of a computational patient has potential to solve important technological challenges in integrating multiscale computational modelling with AI. We believe that this work represents a step forward towards a healthcare digital twin.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.