Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 48 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 473 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Finding Subgraphs in Highly Dynamic Networks (2009.08208v1)

Published 17 Sep 2020 in cs.DC and cs.DS

Abstract: In this paper we consider the fundamental problem of finding subgraphs in highly dynamic distributed networks - networks which allow an arbitrary number of links to be inserted / deleted per round. We show that the problems of $k$-clique membership listing (for any $k\geq 3$), 4-cycle listing and 5-cycle listing can be deterministically solved in $O(1)$-amortized round complexity, even with limited logarithmic-sized messages. To achieve $k$-clique membership listing we introduce a very useful combinatorial structure which we name the robust $2$-hop neighborhood. This is a subset of the 2-hop neighborhood of a node, and we prove that it can be maintained in highly dynamic networks in $O(1)$-amortized rounds. We also show that maintaining the actual 2-hop neighborhood of a node requires near linear amortized time, showing the necessity of our definition. For $4$-cycle and $5$-cycle listing, we need edges within hop distance 3, for which we similarly define the robust $3$-hop neighborhood and prove it can be maintained in highly dynamic networks in $O(1)$-amortized rounds. We complement the above with several impossibility results. We show that membership listing of any other graph on $k\geq 3$ nodes except $k$-clique requires an almost linear number of amortized communication rounds. We also show that $k$-cycle listing for $k\geq 6$ requires $\Omega(\sqrt{n} / \log n)$ amortized rounds. This, combined with our upper bounds, paints a detailed picture of the complexity landscape for ultra fast graph finding algorithms in this highly dynamic environment.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.