Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 58 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 463 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Weak Flexibility in Planar Graphs (2009.07932v1)

Published 16 Sep 2020 in math.CO and cs.DM

Abstract: Recently, Dvo\v{r}\'ak, Norin, and Postle introduced flexibility as an extension of list coloring on graphs [JGT 19']. In this new setting, each vertex $v$ in some subset of $V(G)$ has a request for a certain color $r(v)$ in its list of colors $L(v)$. The goal is to find an $L$ coloring satisfying many, but not necessarily all, of the requests. The main studied question is whether there exists a universal constant $\epsilon >0$ such that any graph $G$ in some graph class $\mathcal{C}$ satisfies at least $\epsilon$ proportion of the requests. More formally, for $k > 0$ the goal is to prove that for any graph $G \in \mathcal{C}$ on vertex set $V$, with any list assignment $L$ of size $k$ for each vertex, and for every $R \subseteq V$ and a request vector $(r(v): v\in R, ~r(v) \in L(v))$, there exists an $L$-coloring of $G$ satisfying at least $\epsilon|R|$ requests. If this is true, then $\mathcal{C}$ is called $\epsilon$-flexible for lists of size $k$. Choi et al. [arXiv 20'] introduced the notion of weak flexibility, where $R = V$. We further develop this direction by introducing a tool to handle weak flexibility. We demonstrate this new tool by showing that for every positive integer $b$ there exists $\epsilon(b)>0$ so that the class of planar graphs without $K_4, C_5 , C_6 , C_7, B_b$ is weakly $\epsilon(b)$-flexible for lists of size $4$ (here $K_n$, $C_n$ and $B_n$ are the complete graph, a cycle, and a book on $n$ vertices, respectively). We also show that the class of planar graphs without $K_4, C_5 , C_6 , C_7, B_5$ is $\epsilon$-flexible for lists of size $4$. The results are tight as these graph classes are not even 3-colorable.

Citations (3)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.