Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 18 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Scaffold-constrained molecular generation (2009.07778v3)

Published 15 Sep 2020 in q-bio.QM and cs.AI

Abstract: One of the major applications of generative models for drug Discovery targets the lead-optimization phase. During the optimization of a lead series, it is common to have scaffold constraints imposed on the structure of the molecules designed. Without enforcing such constraints, the probability of generating molecules with the required scaffold is extremely low and hinders the practicality of generative models for de-novo drug design. To tackle this issue, we introduce a new algorithm to perform scaffold-constrained in-silico molecular design. We build on the well-known SMILES-based Recurrent Neural Network (RNN) generative model, with a modified sampling procedure to achieve scaffold-constrained generation. We directly benefit from the associated reinforcement Learning methods, allowing to design molecules optimized for different properties while exploring only the relevant chemical space. We showcase the method's ability to perform scaffold-constrained generation on various tasks: designing novel molecules around scaffolds extracted from SureChEMBL chemical series, generating novel active molecules on the Dopamine Receptor D2 (DRD2) target, and, finally, designing predicted actives on the MMP-12 series, an industrial lead-optimization project.

Citations (42)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube