Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 163 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Brain tumour segmentation using cascaded 3D densely-connected U-net (2009.07563v1)

Published 16 Sep 2020 in eess.IV, cs.AI, and cs.LG

Abstract: Accurate brain tumour segmentation is a crucial step towards improving disease diagnosis and proper treatment planning. In this paper, we propose a deep-learning based method to segment a brain tumour into its subregions: whole tumour, tumour core and enhancing tumour. The proposed architecture is a 3D convolutional neural network based on a variant of the U-Net architecture of Ronneberger et al. [17] with three main modifications: (i) a heavy encoder, light decoder structure using residual blocks (ii) employment of dense blocks instead of skip connections, and (iii) utilization of self-ensembling in the decoder part of the network. The network was trained and tested using two different approaches: a multitask framework to segment all tumour subregions at the same time and a three-stage cascaded framework to segment one sub-region at a time. An ensemble of the results from both frameworks was also computed. To address the class imbalance issue, appropriate patch extraction was employed in a pre-processing step. The connected component analysis was utilized in the post-processing step to reduce false positive predictions. Experimental results on the BraTS20 validation dataset demonstrates that the proposed model achieved average Dice Scores of 0.90, 0.82, and 0.78 for whole tumour, tumour core and enhancing tumour respectively.

Citations (9)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.