Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Quasi-Autoregressive Residual (QuAR) Flows (2009.07419v1)

Published 16 Sep 2020 in cs.LG and stat.ML

Abstract: Normalizing Flows are a powerful technique for learning and modeling probability distributions given samples from those distributions. The current state of the art results are built upon residual flows as these can model a larger hypothesis space than coupling layers. However, residual flows are extremely computationally expensive both to train and to use, which limits their applicability in practice. In this paper, we introduce a simplification to residual flows using a Quasi-Autoregressive (QuAR) approach. Compared to the standard residual flow approach, this simplification retains many of the benefits of residual flows while dramatically reducing the compute time and memory requirements, thus making flow-based modeling approaches far more tractable and broadening their potential applicability.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.