Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Sensitivity-based Data Augmentation Framework for Model Predictive Control Policy Approximation (2009.07398v3)

Published 16 Sep 2020 in math.OC, cs.SY, and eess.SY

Abstract: Approximating model predictive control (MPC) policy using expert-based supervised learning techniques requires labeled training data sets sampled from the MPC policy. This is typically obtained by sampling the feasible state-space and evaluating the control law by solving the numerical optimization problem offline for each sample. Although the resulting approximate policy can be cheaply evaluated online, generating large training samples to learn the MPC policy can be time consuming and prohibitively expensive. This is one of the fundamental bottlenecks that limit the design and implementation of MPC policy approximation. This technical note aims to address this challenge, and proposes a novel sensitivity-based data augmentation scheme for direct policy approximation. The proposed approach is based on exploiting the parametric sensitivities to cheaply generate additional training samples in the neighborhood of the existing samples.

Citations (10)

Summary

We haven't generated a summary for this paper yet.