Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

gIM: GPU Accelerated RIS-based Influence Maximization Algorithm (2009.07325v2)

Published 15 Sep 2020 in cs.DC

Abstract: Given a social network modeled as a weighted graph $G$, the influence maximization problem seeks $k$ vertices to become initially influenced, to maximize the expected number of influenced nodes under a particular diffusion model. The influence maximization problem has been proven to be NP-hard, and most proposed solutions to the problem are approximate greedy algorithms, which can guarantee a tunable approximation ratio for their results with respect to the optimal solution. The state-of-the-art algorithms are based on Reverse Influence Sampling (RIS) technique, which can offer both computational efficiency and non-trivial $(1-\frac{1}{e}-\epsilon)$-approximation ratio guarantee for any $\epsilon >0$. RIS-based algorithms, despite their lower computational cost compared to other methods, still require long running times to solve the problem in large-scale graphs with low values of $\epsilon$. In this paper, we present a novel and efficient parallel implementation of a RIS-based algorithm, namely IMM, on GPU. The proposed GPU-accelerated influence maximization algorithm, named gIM, can significantly reduce the running time on large-scale graphs with low values of $\epsilon$. Furthermore, we show that gIM algorithm can solve other variations of the IM problem, only by applying minor modifications. Experimental results show that the proposed solution reduces the runtime by a factor up to $220 \times$. The source code of gIM is publicly available online.

Citations (10)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.