Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Weighted integration over a cube based on digital nets and sequences (2009.06993v1)

Published 15 Sep 2020 in math.NA and cs.NA

Abstract: Quasi-Monte Carlo (QMC) methods are equal weight quadrature rules to approximate integrals over the unit cube with respect to the uniform measure. In this paper we discuss QMC integration with respect to general product measures defined on an arbitrary cube. We only require that the cumulative distribution function is invertible. We develop a worst-case error bound and study the dependence of the error on the number of points and the dimension for digital nets and sequences as well as polynomial lattice point sets, which are mapped to the domain using the inverse cumulative distribution function. We do not require any smoothness properties of the probability density function and the worst-case error does not depend on the particular choice of density function and its smoothness. The component-by-component construction of polynomial lattice rules is based on a criterion which depends only on the size of the cube but is otherwise independent of the product measure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.