Emergent Mind

Finite Representability of Semigroups with Demonic Refinement

(2009.06970)
Published Sep 15, 2020 in cs.LO and math.LO

Abstract

Composition and demonic refinement $\sqsubseteq$ of binary relations are defined by \begin{align} (x, y)\in (R;S)&\iff \exists z((x, z)\in R\wedge (z, y)\in S) R\sqsubseteq S&\iff (dom(S)\subseteq dom(R) \wedge R\restriction_{dom(S)}\subseteq S) \end{align} where $dom(S)={x:\exists y (x, y)\in S}$ and $R\restriction_{dom(S)}$ denotes the restriction of $R$ to pairs $(x, y)$ where $x\in dom(S)$. Demonic calculus was introduced to model the total correctness of non-deterministic programs and has been applied to program verification. We prove that the class $R(\sqsubseteq, ;)$ of abstract $(\leq, \circ)$ structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $(\leq, \circ)$ formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $R(\sqsubseteq, ;)$. We prove that a finite representable $(\leq, \circ)$ structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representations for finite representable structures property holds.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a summary of this paper on our Pro plan:

We ran into a problem analyzing this paper.

Newsletter

Get summaries of trending comp sci papers delivered straight to your inbox:

Unsubscribe anytime.