Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Finite Representability of Semigroups with Demonic Refinement (2009.06970v1)

Published 15 Sep 2020 in cs.LO and math.LO

Abstract: Composition and demonic refinement $\sqsubseteq$ of binary relations are defined by \begin{align*} (x, y)\in (R;S)&\iff \exists z((x, z)\in R\wedge (z, y)\in S) R\sqsubseteq S&\iff (dom(S)\subseteq dom(R) \wedge R\restriction_{dom(S)}\subseteq S) \end{align*} where $dom(S)={x:\exists y (x, y)\in S}$ and $R\restriction_{dom(S)}$ denotes the restriction of $R$ to pairs $(x, y)$ where $x\in dom(S)$. Demonic calculus was introduced to model the total correctness of non-deterministic programs and has been applied to program verification. We prove that the class $R(\sqsubseteq, ;)$ of abstract $(\leq, \circ)$ structures isomorphic to a set of binary relations ordered by demonic refinement with composition cannot be axiomatised by any finite set of first-order $(\leq, \circ)$ formulas. We provide a fairly simple, infinite, recursive axiomatisation that defines $R(\sqsubseteq, ;)$. We prove that a finite representable $(\leq, \circ)$ structure has a representation over a finite base. This appears to be the first example of a signature for binary relations with composition where the representation class is non-finitely axiomatisable, but where the finite representations for finite representable structures property holds.

Citations (7)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube