Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 27 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 117 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4 34 tok/s Pro
2000 character limit reached

Gravitational Models Explain Shifts on Human Visual Attention (2009.06963v1)

Published 15 Sep 2020 in cs.CV, cs.AI, and cs.LG

Abstract: Visual attention refers to the human brain's ability to select relevant sensory information for preferential processing, improving performance in visual and cognitive tasks. It proceeds in two phases. One in which visual feature maps are acquired and processed in parallel. Another where the information from these maps is merged in order to select a single location to be attended for further and more complex computations and reasoning. Its computational description is challenging, especially if the temporal dynamics of the process are taken into account. Numerous methods to estimate saliency have been proposed in the last three decades. They achieve almost perfect performance in estimating saliency at the pixel level, but the way they generate shifts in visual attention fully depends on winner-take-all (WTA) circuitry. WTA is implemented} by the biological hardware in order to select a location with maximum saliency, towards which to direct overt attention. In this paper we propose a gravitational model (GRAV) to describe the attentional shifts. Every single feature acts as an attractor and {the shifts are the result of the joint effects of the attractors. In the current framework, the assumption of a single, centralized saliency map is no longer necessary, though still plausible. Quantitative results on two large image datasets show that this model predicts shifts more accurately than winner-take-all.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.