Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 173 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

On the use of local structural properties for improving the efficiency of hierarchical community detection methods (2009.06798v1)

Published 15 Sep 2020 in cs.LG, cs.SI, and stat.ML

Abstract: Community detection is a fundamental problem in the analysis of complex networks. It is the analogue of clustering in network data mining. Within community detection methods, hierarchical algorithms are popular. However, their iterative nature and the need to recompute the structural properties used to split the network (i.e. edge betweenness in Girvan and Newman's algorithm), make them unsuitable for large network data sets. In this paper, we study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection while, at the same time, achieving competitive results in terms of modularity. In particular, we study the potential use of the structural properties commonly used to perform local link prediction, a supervised learning problem where community structure is relevant, as nodes are prone to establish new links with other nodes within their communities. In addition, we check the performance impact of network pruning heuristics as an ancillary tactic to make hierarchical community detection more efficient

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.