Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Robust Deep Learning Ensemble against Deception (2009.06589v1)

Published 14 Sep 2020 in cs.LG and stat.ML

Abstract: Deep neural network (DNN) models are known to be vulnerable to maliciously crafted adversarial examples and to out-of-distribution inputs drawn sufficiently far away from the training data. How to protect a machine learning model against deception of both types of destructive inputs remains an open challenge. This paper presents XEnsemble, a diversity ensemble verification methodology for enhancing the adversarial robustness of DNN models against deception caused by either adversarial examples or out-of-distribution inputs. XEnsemble by design has three unique capabilities. First, XEnsemble builds diverse input denoising verifiers by leveraging different data cleaning techniques. Second, XEnsemble develops a disagreement-diversity ensemble learning methodology for guarding the output of the prediction model against deception. Third, XEnsemble provides a suite of algorithms to combine input verification and output verification to protect the DNN prediction models from both adversarial examples and out of distribution inputs. Evaluated using eleven popular adversarial attacks and two representative out-of-distribution datasets, we show that XEnsemble achieves a high defense success rate against adversarial examples and a high detection success rate against out-of-distribution data inputs, and outperforms existing representative defense methods with respect to robustness and defensibility.

Citations (27)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.