Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automatic Trajectory Synthesis for Real-Time Temporal Logic (2009.06436v1)

Published 14 Sep 2020 in eess.SY, cs.FL, cs.RO, and cs.SY

Abstract: Many safety-critical systems must achieve high-level task specifications with guaranteed safety and correctness. Much recent progress towards this goal has been made through controller synthesis from temporal logic specifications. Existing approaches, however, have been limited to relatively short and simple specifications. Furthermore, existing methods either consider some prior discretization of the state-space, deal only with a convex fragment of temporal logic, or are not provably complete. We propose a scalable, provably complete algorithm that synthesizes continuous trajectories to satisfy non-convex \gls*{rtl} specifications. We separate discrete task planning and continuous motion planning on-the-fly and harness highly efficient boolean satisfiability (SAT) and \gls*{lp} solvers to find dynamically feasible trajectories that satisfy non-convex \gls*{rtl} specifications for high dimensional systems. The proposed design algorithms are proven sound and complete, and simulation results demonstrate our approach's scalability.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.