Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 73 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Accelerating gradient-based topology optimization design with dual-model neural networks (2009.06245v1)

Published 14 Sep 2020 in cs.AI

Abstract: Topology optimization (TO) is a common technique used in free-form designs. However, conventional TO-based design approaches suffer from high computational cost due to the need for repetitive forward calculations and/or sensitivity analysis, which are typically done using high-dimensional simulations such as Finite Element Analysis (FEA). In this work, neural networks are used as efficient surrogate models for forward and sensitivity calculations in order to greatly accelerate the design process of topology optimization. To improve the accuracy of sensitivity analyses, dual-model neural networks that are trained with both forward and sensitivity data are constructed and are integrated into the Solid Isotropic Material with Penalization (SIMP) method to replace FEA. The performance of the accelerated SIMP method is demonstrated on two benchmark design problems namely minimum compliance design and metamaterial design. The efficiency gained in the problem with size of 64x64 is 137 times in forward calculation and 74 times in sensitivity analysis. In addition, effective data generation methods suitable for TO designs are investigated and developed, which lead to a great saving in training time. In both benchmark design problems, a design accuracy of 95% can be achieved with only around 2000 training data.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.