Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 64 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 457 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SAPAG: A Self-Adaptive Privacy Attack From Gradients (2009.06228v1)

Published 14 Sep 2020 in cs.LG, cs.CR, and stat.ML

Abstract: Distributed learning such as federated learning or collaborative learning enables model training on decentralized data from users and only collects local gradients, where data is processed close to its sources for data privacy. The nature of not centralizing the training data addresses the privacy issue of privacy-sensitive data. Recent studies show that a third party can reconstruct the true training data in the distributed machine learning system through the publicly-shared gradients. However, existing reconstruction attack frameworks lack generalizability on different Deep Neural Network (DNN) architectures and different weight distribution initialization, and can only succeed in the early training phase. To address these limitations, in this paper, we propose a more general privacy attack from gradient, SAPAG, which uses a Gaussian kernel based of gradient difference as a distance measure. Our experiments demonstrate that SAPAG can construct the training data on different DNNs with different weight initializations and on DNNs in any training phases.

Citations (33)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube