Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 118 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Cut-Equivalent Trees are Optimal for Min-Cut Queries (2009.06090v1)

Published 13 Sep 2020 in cs.DS

Abstract: Min-Cut queries are fundamental: Preprocess an undirected edge-weighted graph, to quickly report a minimum-weight cut that separates a query pair of nodes $s,t$. The best data structure known for this problem simply builds a cut-equivalent tree, discovered 60 years ago by Gomory and Hu, who also showed how to construct it using $n-1$ minimum $st$-cut computations. Using state-of-the-art algorithms for minimum $st$-cut (Lee and Sidford, FOCS 2014) arXiv:1312.6713, one can construct the tree in time $\tilde{O}(mn{3/2})$, which is also the preprocessing time of the data structure. (Throughout, we focus on polynomially-bounded edge weights, noting that faster algorithms are known for small/unit edge weights.) Our main result shows the following equivalence: Cut-equivalent trees can be constructed in near-linear time if and only if there is a data structure for Min-Cut queries with near-linear preprocessing time and polylogarithmic (amortized) query time, and even if the queries are restricted to a fixed source. That is, equivalent trees are an essentially optimal solution for Min-Cut queries. This equivalence holds even for every minor-closed family of graphs, such as bounded-treewidth graphs, for which a two-decade old data structure (Arikati et al., J.~Algorithms 1998) implies the first near-linear time construction of cut-equivalent trees. Moreover, unlike all previous techniques for constructing cut-equivalent trees, ours is robust to relying on approximation algorithms. In particular, using the almost-linear time algorithm for $(1+\epsilon)$-approximate minimum $st$-cut (Kelner et al., SODA 2014), we can construct a $(1+\epsilon)$-approximate flow-equivalent tree (which is a slightly weaker notion) in time $n{2+o(1)}$. This leads to the first $(1+\epsilon)$-approximation for All-Pairs Max-Flow that runs in time $n{2+o(1)}$, and matches the output size almost-optimally.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.