Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 42 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 217 tok/s Pro
GPT OSS 120B 474 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Cut-Equivalent Trees are Optimal for Min-Cut Queries (2009.06090v1)

Published 13 Sep 2020 in cs.DS

Abstract: Min-Cut queries are fundamental: Preprocess an undirected edge-weighted graph, to quickly report a minimum-weight cut that separates a query pair of nodes $s,t$. The best data structure known for this problem simply builds a cut-equivalent tree, discovered 60 years ago by Gomory and Hu, who also showed how to construct it using $n-1$ minimum $st$-cut computations. Using state-of-the-art algorithms for minimum $st$-cut (Lee and Sidford, FOCS 2014) arXiv:1312.6713, one can construct the tree in time $\tilde{O}(mn{3/2})$, which is also the preprocessing time of the data structure. (Throughout, we focus on polynomially-bounded edge weights, noting that faster algorithms are known for small/unit edge weights.) Our main result shows the following equivalence: Cut-equivalent trees can be constructed in near-linear time if and only if there is a data structure for Min-Cut queries with near-linear preprocessing time and polylogarithmic (amortized) query time, and even if the queries are restricted to a fixed source. That is, equivalent trees are an essentially optimal solution for Min-Cut queries. This equivalence holds even for every minor-closed family of graphs, such as bounded-treewidth graphs, for which a two-decade old data structure (Arikati et al., J.~Algorithms 1998) implies the first near-linear time construction of cut-equivalent trees. Moreover, unlike all previous techniques for constructing cut-equivalent trees, ours is robust to relying on approximation algorithms. In particular, using the almost-linear time algorithm for $(1+\epsilon)$-approximate minimum $st$-cut (Kelner et al., SODA 2014), we can construct a $(1+\epsilon)$-approximate flow-equivalent tree (which is a slightly weaker notion) in time $n{2+o(1)}$. This leads to the first $(1+\epsilon)$-approximation for All-Pairs Max-Flow that runs in time $n{2+o(1)}$, and matches the output size almost-optimally.

Citations (18)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube