Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Extracting Optimal Solution Manifolds using Constrained Neural Optimization (2009.06024v4)

Published 13 Sep 2020 in cs.NE, cs.CG, and cs.CV

Abstract: Constrained Optimization solution algorithms are restricted to point based solutions. In practice, single or multiple objectives must be satisfied, wherein both the objective function and constraints can be non-convex resulting in multiple optimal solutions. Real world scenarios include intersecting surfaces as Implicit Functions, Hyperspectral Unmixing and Pareto Optimal fronts. Local or global convexification is a common workaround when faced with non-convex forms. However, such an approach is often restricted to a strict class of functions, deviation from which results in sub-optimal solution to the original problem. We present neural solutions for extracting optimal sets as approximate manifolds, where unmodified, non-convex objectives and constraints are defined as modeler guided, domain-informed $L_2$ loss function. This promotes interpretability since modelers can confirm the results against known analytical forms in their specific domains. We present synthetic and realistic cases to validate our approach and compare against known solvers for bench-marking in terms of accuracy and computational efficiency.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Gurpreet Singh (50 papers)
  2. Soumyajit Gupta (13 papers)
  3. Matthew Lease (57 papers)

Summary

We haven't generated a summary for this paper yet.