Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 178 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Abstractive Information Extraction from Scanned Invoices (AIESI) using End-to-end Sequential Approach (2009.05728v1)

Published 12 Sep 2020 in cs.CV

Abstract: Recent proliferation in the field of Machine Learning and Deep Learning allows us to generate OCR models with higher accuracy. Optical Character Recognition(OCR) is the process of extracting text from documents and scanned images. For document data streamlining, we are interested in data like, Payee name, total amount, address, and etc. Extracted information helps to get complete insight of data, which can be helpful for fast document searching, efficient indexing in databases, data analytics, and etc. Using AIESI we can eliminate human effort for key parameters extraction from scanned documents. Abstract Information Extraction from Scanned Invoices (AIESI) is a process of extracting information like, date, total amount, payee name, and etc from scanned receipts. In this paper we proposed an improved method to ensemble all visual and textual features from invoices to extract key invoice parameters using Word wise BiLSTM.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.