Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semantic-preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection (2009.05602v3)

Published 11 Sep 2020 in cs.CR and cs.AI

Abstract: As an increasing number of deep-learning-based malware scanners have been proposed, the existing evasion techniques, including code obfuscation and polymorphic malware, are found to be less effective. In this work, we propose a reinforcement learning-based semantics-preserving (i.e.functionality-preserving) attack against black-box GNNs (GraphNeural Networks) for malware detection. The key factor of adversarial malware generation via semantic Nops insertion is to select the appropriate semanticNopsand their corresponding basic blocks. The proposed attack uses reinforcement learning to automatically make these "how to select" decisions. To evaluate the attack, we have trained two kinds of GNNs with five types(i.e., Backdoor, Trojan-Downloader, Trojan-Ransom, Adware, and Worm) of Windows malware samples and various benign Windows programs. The evaluation results have shown that the proposed attack can achieve a significantly higher evasion rate than three baseline attacks, namely the semantics-preserving random instruction insertion attack, the semantics-preserving accumulative instruction insertion attack, and the semantics-preserving gradient-based instruction insertion attack.

Citations (25)

Summary

We haven't generated a summary for this paper yet.