Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 177 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Semantic-preserving Reinforcement Learning Attack Against Graph Neural Networks for Malware Detection (2009.05602v3)

Published 11 Sep 2020 in cs.CR and cs.AI

Abstract: As an increasing number of deep-learning-based malware scanners have been proposed, the existing evasion techniques, including code obfuscation and polymorphic malware, are found to be less effective. In this work, we propose a reinforcement learning-based semantics-preserving (i.e.functionality-preserving) attack against black-box GNNs (GraphNeural Networks) for malware detection. The key factor of adversarial malware generation via semantic Nops insertion is to select the appropriate semanticNopsand their corresponding basic blocks. The proposed attack uses reinforcement learning to automatically make these "how to select" decisions. To evaluate the attack, we have trained two kinds of GNNs with five types(i.e., Backdoor, Trojan-Downloader, Trojan-Ransom, Adware, and Worm) of Windows malware samples and various benign Windows programs. The evaluation results have shown that the proposed attack can achieve a significantly higher evasion rate than three baseline attacks, namely the semantics-preserving random instruction insertion attack, the semantics-preserving accumulative instruction insertion attack, and the semantics-preserving gradient-based instruction insertion attack.

Citations (25)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.